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Why ac coupling ?
• If the photocathode must be kept at ground potential then the 

multiplier must be run so that the anode is at positive HV.  

• But then the anode current pulse must be decoupled from the 
high voltage. This has to be done with a capacitor that can 
handle high voltage. 

• An advantage of this scheme is that a single cable can be 
used to both supply high voltage and carry signal.  

• But the disadvantage is that the signal must go through a 
capacitor and therefore it is differentiated. 
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Example from Hamamatsu

This is the divider circuit from HPK for a 10 stage R7081 tube for 
positive HV.  The important items are the large total resistance (12.7 
MOhm) to ground, and the capacitors (c4, c5). Clearly a Norton 
equivalent will have a large resistor and a capacitor.  
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Voc1 c2vi

s1 s2

• This is a simple arrangement. We examine what happens as 
switches are closed and opened. Also imagine that there is a long 
cable between c1 and c2.  The cable capacitance is included in c2.

time s1 s2 q1 v1 q2 v2 v0

t0 o o 0 0 0 0 0

t1 c o vi*c1 vi 0 0 0

t2 o o vi*c1 vi 0 0 0

t3 o c vi*c1*c1/
(c1+c2)

vi*c1/
(c1+c2)

vi*c1*c2/
(c1+c2)

vi*c1/
(c1+c2)

vi*c1/
(c1+c2)

As s2 is closed the charge from c1 gets transferred to c2 (as long as 
c2>>c1). if there are any resistances in parallel to c1 and c2, they will 
cause the capacitors to discharge with a time constant ~ rc. 4



Circuit Narrative
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Vo
c1

c2i(t) R1
R2

z1 z2

We now think about the equivalent circuit for PMT connected to a 
capacitively coupled readout.  
The voltage is read across a resistor R2 (small impedance) 
C1 is a small capacitor that gets charged up from the current from the 
detector.  R1 is very large and acts as an effective open switch initially.  
The charge from C1 gets transferred to C2 through R2 (with time C1*R2. 
C2 is very large and has very little voltage buildup.  
C2 has to drain over time, and it can only drain through the resistors R1 
and R2.  Since R1 is very large, it dominates the draining time of R1*C2.  



equivalent circuit

Vo
c1

c2i(t) R1
R2

z1 z2
z1
−1 = 1

r1
+ iωc1,        z2 = r2 +

1
iωc2

   and   z−1 = 1
z1

+ 1
z2

z(ω ) = r2 +1/ iωc2

1+ iωc1r2 + c1 / c2 + r2 / r1 +1/ iωr1c2

    notice that care is needed near ω=0

We will remove all undefined quantities from the denominator, but first to get voltage
V0     across r2   we need to multiply z(ω ) by   r2 / z2

T (ω ) = z(ω ) r2
r2 +1/ iωc2

T (ω ) = r2
iωr1c2

1+ (1+ c1 / c2 + r2 / r1)iωr1c2 −ω
2r1c2r2c1

Now notice that this goes to 0 as ω → 0 and therefore there is no DC current. 

One might wonder what if r1  were not present. Then the network would not work because 
any charge that is getting deposited on the capacitors would not be able to discharge over a long time period.  
Charge from both sides of a capacitor must drain to neutralize the capacitor. 
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V0 (ω ) = I(ω )T (ω )
We are again going to assume that the incoming current has an exponential pulse with total 
charge of q0 and time constant of τ s

T (ω ) = r2
iωr1c2

1+ (1+ c1 / c2 + r2 / r1)iωr1c2 −ω
2r1c2r2c1

use Laplace transform since this is for pulses with t > 0

V0 (s) = q0r2
1+ sτ s

sr1c2

1+ (1+ c1 / c2 + r2 / r1)sr1c2 + s
2r1c2r2c1

we can safely assume c2 >> c1   and r1 >> r2   and get a much simplified version with two clear time
constants.  long time constant τ L = r1c2    and short time constant τ 0 = r2c1

V0 (s) = q0r2
1+ sτ s

s /τ 0

s2 + s /τ 0 +1/ (τ 0τ L )

V0 (s) = q0r2
τ 0τ s

s
s +1/τ s

1
(s +1/ 2τ 0 )2 + (1 / (τ 0τ L )−1/ 4τ 0

2 )
we set the second term to β 2 = (1 / (τ 0τ L )−1/ 4τ 0

2 )
With a suitably large τ L  the term is always negative.   
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V0 (s) = q0r2
τ 0τ s

s
s +1/τ s

1
(s +1/ 2τ 0 )2 + (1 / (τ 0τ L )−1/ 4τ 0

2 )
Let's assume that  β 2 = (1 / (τ 0τ L )−1/ 4τ 0

2 ) < 0

V0 (s) = q0r2
τ 0τ s

s
s +1/τ s

× 1
s +1/ 2τ 0 + 1/ (τ 0τ L )−1/ 4τ 0

2 1/2 ×
1

s +1/ 2τ 0 − 1/ (τ 0τ L )−1/ 4τ 0
2 1/2

V0 (s) = q0r2
τ 0τ s

s
s +1/τ s

× 1
s +1/τ1

× 1
s +1/τ 2

τ1 and τ 2  are defined in the obvious way.  Notice that 1/τ 2 > 0
With some approximations and τ L >> τ 0,   1 /τ1 ≈1/τ 0 −1/τ L   and 1/τ 2 ≈1/τ L

and therefore τ1   is a short time constant and τ 2  is a long time constant. 
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The solution has three exponentials. We arrange the terms in descending order of time constants. 
The normalization is such that the initial value at t = 0 and the integral (0 to ∞)  goes to 0.  
The resulting pulse will have a single positive root and significant undershoot. 
I do not know how to calculate the root exactly.  
We will now use this to simulate what happens in case of pileup.  

v0 (t) = q0r2
τ sτ 0

− e− t /τ 2

τ 2 ( 1
τ1

− 1
τ 2

)(1
τ s

− 1
τ 2

)
+ e− t /τ1

τ1(
1
τ 1

− 1
τ 2

)( 1
τ s

− 1
τ1

)
− e− t /τ s

τ s (
1
τ s

− 1
τ 2

)(1
τ s

− 1
τ 1

)

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

But first let's plot this for some parameters.  
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Set some parameters 
q0 = −1.6 ×10−12C        r2 = 50Ω           τ s = 3×10−9 sec
We will vary τ 0  from 1 to 5 ns, and τ L  from 5 to 200 ns. 
As can be seen, the pulse can be arranged to have a sharp or long opposite polarity pulse. 
In case of long pulse, this will create a DC offset that will depend on the rate of pulses.  

table and plots for pmt with ac coupling

t0 tL t1 t2

1 4 20 5.5 14.5

2 4 200 4.1 196

3 1 5 1.4 3.6

4 1 50 1.0 49
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We will use 1 and 2 for modeling 
long scintillation pulses



questions 
• how do we calculate the DC offset ?

• How does the DC offset depend on the rate ?

• what happens if we integrate the pulse with a fixed 
window ? Does this accurately depict the charge ?

• How do we get the charge which is the normalization 
of the pulse ? 

• How do we get the parameters of the pulse through 
inspection or through measurement ?
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Some mathematics
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Before we start into answering the questions, we need to examine the function.  It is 
truly a fascinating object.  The general form has fascinated great mathematicians for centuries. 

f (t) = ajt
pj

j=1

n

∑      

We will limit ourselves to aj , pj ,t ∈!;  t ≥ 0 also   p1 > p2 > ...> pn

ex = t     →     F(x) = aje
xpj

j=1

n

∑     with x ∈!

bj = e
pj   →    F(x) = ajbj

x

j=1

n

∑
This is called an exponential polynomial, or generalized polynomial and also a Dirichlet polynomial.
We will use some powerful theorems with simplifications suitable to our 3 term polynomial.  

Definitions:  assume f (t)  has all derivatives, and t0  is a zero of the function; then if the first non-zero derivative 
 f (k )(t0 ) ≠ 0 is the k 'th derivative then t0  is a zero of the k 'th  order.  If k = 1 then this is a simple zero. 
Z(F) is the sum of all orders of the zeros. 
(aj ) = (a1,a2,...,an )  is the sequence of coefficients in order.  Aj = a1 + a2 + ...+ aj  is a partial sum. 

Recall that if pj  are non-negative integers then f(t) is a n 'th degree polynomial with at most 
n zeros.  We have methods to find these zeros, but what do we do in the case of a generalized 
polynomial? 



Theorems and references
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This turns out to be an important advanced topic in analysis.  We are going to 
just apply some lessons from the following theorems, somewhat sloppily stated (to be brief).  
These theorems are similar to Descarte's rule of signs.  

Th1:  For F(x) (as defined on previous slide) with the terms ordered according to 
p1 > p2 > ...> pn ,  the sum of orders of all positive zeros is not greater than S[(Aj )] which is 
the number of sign changes in the sequence Aj . The interval (0,∞) does not include 0. 

The theorem can be extended to negatives by reversing the sequence B j = an− j + ..+ an

Th2: With An = 0,  the function has a somewhat special form with F(0) = 0,  now sum
of orders of all zeros Z(F) <  S[(Aj )]+1

References:  See a review by Jameson  (Math. Gassett 90, No. 518 (2006)) 223-234
Also J. F. Ritt (Trans. Amer. Math. Soc 31 (1929) 680-686.  



analysis of v0(t)
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First we are going to arrange the function in descending order, taking care to make all terms 
expressed in the time constants positive. 

v0 (t) = q0r2
τ sτ 0

−e− t /τ s

τ s (
1
τ s

− 1
τ 2

)(1
τ s

− 1
τ 1

)

τ s (
1
τ s

− 1
τ 1

)

τ 2 ( 1
τ1

− 1
τ 2

)
et (1/τ s−1/τ 2 ) −

τ s (
1
τ s

− 1
τ 2

)

τ1(
1
τ 1

− 1
τ 2

)
et (1/τ s−1/τ1 ) +1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

The normalization is such that the initial value at t = 0 and the integral (0 to ∞)  goes to 0.  
We ignore q0  and its sign in the following discussion.  Assume q0  is positive. I have pulled 
the fastest decaying component out with a negative sign.  
 
Now notice the value at ∞  goes to 0 from negative, since it is dominated by the first term in bracket.

By construction A1 =
τ s
τ 2

(1
τ s

− 1
τ 1

)( 1
τ1

− 1
τ 2

)−1 > 0,  A2 = −1 and  A3 = 0 and therefore there are 

two sign changes, with one of them at 0 and second one on the positive side. Both first order. 

We can find the second zero by using τ 2 >> τ1 > τ s  and some successive approximations.



location of zero crossing
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We will now approximately find the zero crossing (tzero ) for the function in the brackets.  

fbracket (t) =
τ s (

1
τ s

− 1
τ 1

)

τ 2 ( 1
τ1

− 1
τ 2

)
et (1/τ s−1/τ 2 ) −

τ s (
1
τ s

− 1
τ 2

)

τ1(
1
τ 1

− 1
τ 2

)
et (1/τ s−1/τ1 ) +1

The tzero  can be bounded from below and above using some observations. It must be greater than the 
maximum of the function (or the zero of the first derivative !). This is easily obtained.  

tz− =
Log(τ 2 /τ1)

(1 /τ1 −1/τ 2 )
      If τ 2  is large then this is a good approximation.  

Upper bound is found by making the observation that the zero of fbracket (t)−1 must be greater than tzero

tz+ =
Log(τ 2 (1 /τ s −1/τ 2 )

τ1(1 /τ s −1/τ1)
)

(1 /τ1 −1/τ 2 )
                           tz− < tzero < tz+

The approximation can be improved iteratively by using function itself.  

tzero ≈ (1 /τ 2 −1/τ1)−1 × Log τ1(1 /τ s −1/τ1)
τ 2 (1 /τ s −1/τ 2 )

+ τ1(1 /τ1 −1/τ 2 )
τ s (1 /τ s −1/τ 2 )

e− tz+ (1/τ s−1/τ 2 )⎡

⎣
⎢

⎤

⎦
⎥

 We are now going to use this with our examples to calculate various quanties.  



We need one more item to understand rate fluctuations
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The average value of v0 (t) after the zero crossing is what we want. 
This  is not an average over time (0 →  T ), but an average over great 
many intervals of length T with t  held fixed. Imagine that v(t) is a pulse 
much shorter than T, and rate r =N/T constant.
Then let the number of intervals go to infinity.  
We are integrating only above the zero crossing.  

eg(t) = r q v(t)dt
tz

∞

∫
This is the average value of the pulse multiplied by the rate. 
The variance of the baseline is

v(t)2 − v(t) 2 = r q2 v(t)2 dt
tz

∞

∫
This proof takes a bit of work, ... 

This is called Campbell's theorem. You can learn more from one of my other lectures.  
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q0 = −1.6 ×10−12C    r2 = 50Ω   We will now keep τ s < τ 0 < τ L / 4 because of the approximations made. 

table with zero crossing and charge integration

ts (ns) t0 (ns) tL(ns) t1(ns) t2(ns) t-zc(ns)
charge 
fraction 
in peak

baseline 
shift 10 

MHz  (mV)

baseline 
fluctuation 

(mV)

1 3 4 20 5.5 14.5 12.6 0.71 0.80 1.6

2 3 4 200 4.1 196 21.0 0.93 1.04 0.52

3 1 2 9 3 6 5.4 0.72 0.81 1.91

4 1 2 50 1.0 49 8.2 0.90 1.00 1.00

1

2

3
4
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0 2.×10-8 4.×10-8 6.×10-8 8.×10-8 1.×10-7
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What happens after 0, 20, 40, 80 m of RG59/u ?
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We are using the cable attenuation constant of 4.082x10-7 per Sqrt[Hz] per meter; 
see the previous lecture on pmts and cables.  
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Conclusion 
• We calculated the pulse shape for an AC coupled network that is commonly used for PMTs.  

It is characterized by 3 time constants and has a general form. 

• The pulse has a zero crossing and the total charge integrates to zero. The current in the long 
pulse can cause a baseline shift and baseline variance. 

• We have formulated a method for obtaining the zero crossing from the time constants.  

• If the the 3rd time constant is short then the baseline shift is smaller, but fluctuations are 
larger.  

• The proper way to integrate the charge is up to the zero crossing.  The fraction of charge 
that is in the positive pulse depends on the time constants. In particular, the long time 
constant.  

• If the pulse is digitized then a fit could be performed to get the constants and find the 
charge.  Digitization time needs to be of the same order as the shorter time constant. 

• In case of long cables, the pulse shape will broaden and the zero crossing will move farther; 
in this case, we must develop a way to fit the pulse to obtain the appropriate parameters. 
The cable will cause fast signals to lose amplitude (but not total charge which gets spread 
out.).  

• The cable will increase the baseline shift because it redistributes the charge to lower 
frequencies, but reduce the fluctuation.   (Prove this to yourselves ) 
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